summaryrefslogtreecommitdiff
path: root/awesome/lib/gears/shape.lua
diff options
context:
space:
mode:
Diffstat (limited to 'awesome/lib/gears/shape.lua')
-rw-r--r--awesome/lib/gears/shape.lua785
1 files changed, 0 insertions, 785 deletions
diff --git a/awesome/lib/gears/shape.lua b/awesome/lib/gears/shape.lua
deleted file mode 100644
index 4962d78..0000000
--- a/awesome/lib/gears/shape.lua
+++ /dev/null
@@ -1,785 +0,0 @@
----------------------------------------------------------------------------
---- Module dedicated to gather common shape painters.
---
--- It add the concept of "shape" to Awesome. A shape can be applied to a
--- background, a margin, a mask or a drawable shape bounding.
---
--- The functions exposed by this module always take a context as first
--- parameter followed by the widget and height and additional parameters.
---
--- The functions provided by this module only create a path in the content.
--- to actually draw the content, use `cr:fill()`, `cr:mask()`, `cr:clip()` or
--- `cr:stroke()`
---
--- In many case, it is necessary to apply the shape using a transformation
--- such as a rotation. The preferred way to do this is to wrap the function
--- in another function calling `cr:rotate()` (or any other transformation
--- matrix).
---
--- To specialize a shape where the API doesn't allows extra arguments to be
--- passed, it is possible to wrap the shape function like:
---
--- local new_shape = function(cr, width, height)
--- gears.shape.rounded_rect(cr, width, height, 2)
--- end
---
--- Many elements can be shaped. This include:
---
--- * `client`s (see `gears.surface.apply_shape_bounding`)
--- * `wibox`es (see `wibox.shape`)
--- * All widgets (see `wibox.container.background`)
--- * The progressbar (see `wibox.widget.progressbar.bar_shape`)
--- * The graph (see `wibox.widget.graph.step_shape`)
--- * The checkboxes (see `wibox.widget.checkbox.check_shape`)
--- * Images (see `wibox.widget.imagebox.clip_shape`)
--- * The taglist tags (see `awful.widget.taglist`)
--- * The tasklist clients (see `awful.widget.tasklist`)
--- * The tooltips (see `awful.tooltip`)
---
--- @author Emmanuel Lepage Vallee
--- @copyright 2011-2016 Emmanuel Lepage Vallee
--- @module gears.shape
----------------------------------------------------------------------------
-local g_matrix = require( "gears.matrix" )
-local unpack = unpack or table.unpack -- luacheck: globals unpack (compatibility with Lua 5.1)
-local atan2 = math.atan2 or math.atan -- lua 5.3 compat
-
-local module = {}
-
---- Add a rounded rectangle to the current path.
--- Note: If the radius is bigger than either half side, it will be reduced.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_rounded_rect.svg)
---
--- @usage
---shape.rounded_rect(cr, 70, 70, 10)
---shape.rounded_rect(cr,20,70, 5)
---shape.transform(shape.rounded_rect) : translate(0,25) (cr,70,20, 5)
---
--- @param cr A cairo content
--- @tparam number width The rectangle width
--- @tparam number height The rectangle height
--- @tparam number radius the corner radius
-function module.rounded_rect(cr, width, height, radius)
-
- radius = radius or 10
-
- if width / 2 < radius then
- radius = width / 2
- end
-
- if height / 2 < radius then
- radius = height / 2
- end
-
- cr:move_to(0, radius)
-
- cr:arc( radius , radius , radius, math.pi , 3*(math.pi/2) )
- cr:arc( width-radius, radius , radius, 3*(math.pi/2), math.pi*2 )
- cr:arc( width-radius, height-radius, radius, math.pi*2 , math.pi/2 )
- cr:arc( radius , height-radius, radius, math.pi/2 , math.pi )
-
- cr:close_path()
-end
-
---- Add a rectangle delimited by 2 180 degree arcs to the path.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_rounded_bar.svg)
---
--- @usage
---shape.rounded_bar(cr, 70, 70)
---shape.rounded_bar(cr, 20, 70)
---shape.rounded_bar(cr, 70, 20)
---
--- @param cr A cairo content
--- @param width The rectangle width
--- @param height The rectangle height
-function module.rounded_bar(cr, width, height)
- module.rounded_rect(cr, width, height, height / 2)
-end
-
---- A rounded rect with only some of the corners rounded.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_partially_rounded_rect.svg)
---
--- @usage
---shape.partially_rounded_rect(cr, 70, 70)
---shape.partially_rounded_rect(cr, 70, 70, true)
---shape.partially_rounded_rect(cr, 70, 70, true, true, false, true, 30)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam boolean tl If the top left corner is rounded
--- @tparam boolean tr If the top right corner is rounded
--- @tparam boolean br If the bottom right corner is rounded
--- @tparam boolean bl If the bottom left corner is rounded
--- @tparam number rad The corner radius
-function module.partially_rounded_rect(cr, width, height, tl, tr, br, bl, rad)
- rad = rad or 10
- if width / 2 < rad then
- rad = width / 2
- end
-
- if height / 2 < rad then
- rad = height / 2
- end
-
- -- Top left
- if tl then
- cr:arc( rad, rad, rad, math.pi, 3*(math.pi/2))
- else
- cr:move_to(0,0)
- end
-
- -- Top right
- if tr then
- cr:arc( width-rad, rad, rad, 3*(math.pi/2), math.pi*2)
- else
- cr:line_to(width, 0)
- end
-
- -- Bottom right
- if br then
- cr:arc( width-rad, height-rad, rad, math.pi*2 , math.pi/2)
- else
- cr:line_to(width, height)
- end
-
- -- Bottom left
- if bl then
- cr:arc( rad, height-rad, rad, math.pi/2, math.pi)
- else
- cr:line_to(0, height)
- end
-
- cr:close_path()
-end
-
---- A rounded rectangle with a triangle at the top.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_infobubble.svg)
---
--- @usage
---shape.infobubble(cr, 70, 70)
---shape.transform(shape.infobubble) : translate(0, 20)
--- : rotate_at(35,35,math.pi) (cr,70,20,10, 5, 35 - 5)
---shape.transform(shape.infobubble)
--- : rotate_at(35,35,3*math.pi/2) (cr,70,70, nil, nil, 40)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=5] number corner_radius The corner radius
--- @tparam[opt=10] number arrow_size The width and height of the arrow
--- @tparam[opt=width/2 - arrow_size/2] number arrow_position The position of the arrow
-function module.infobubble(cr, width, height, corner_radius, arrow_size, arrow_position)
- arrow_size = arrow_size or 10
- corner_radius = math.min((height-arrow_size)/2, corner_radius or 5)
- arrow_position = arrow_position or width/2 - arrow_size/2
-
-
- cr:move_to(0 ,corner_radius+arrow_size)
-
- -- Top left corner
- cr:arc(corner_radius, corner_radius+arrow_size, (corner_radius), math.pi, 3*(math.pi/2))
-
- -- The arrow triangle (still at the top)
- cr:line_to(arrow_position , arrow_size )
- cr:line_to(arrow_position + arrow_size , 0 )
- cr:line_to(arrow_position + 2*arrow_size , arrow_size )
-
- -- Complete the rounded rounded rectangle
- cr:arc(width-corner_radius, corner_radius+arrow_size , (corner_radius) , 3*(math.pi/2) , math.pi*2 )
- cr:arc(width-corner_radius, height-(corner_radius) , (corner_radius) , math.pi*2 , math.pi/2 )
- cr:arc(corner_radius , height-(corner_radius) , (corner_radius) , math.pi/2 , math.pi )
-
- -- Close path
- cr:close_path()
-end
-
---- A rectangle terminated by an arrow.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_rectangular_tag.svg)
---
--- @usage
---shape.rectangular_tag(cr, 70, 70)
---shape.transform(shape.rectangular_tag) : translate(0, 30) (cr, 70, 10, 10)
---shape.transform(shape.rectangular_tag) : translate(0, 30) (cr, 70, 10, -10)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=height/2] number arrow_length The length of the arrow part
-function module.rectangular_tag(cr, width, height, arrow_length)
- arrow_length = arrow_length or height/2
- if arrow_length > 0 then
- cr:move_to(0 , height/2 )
- cr:line_to(arrow_length , 0 )
- cr:line_to(width , 0 )
- cr:line_to(width , height )
- cr:line_to(arrow_length , height )
- else
- cr:move_to(0 , 0 )
- cr:line_to(-arrow_length, height/2 )
- cr:line_to(0 , height )
- cr:line_to(width , height )
- cr:line_to(width , 0 )
- end
-
- cr:close_path()
-end
-
---- A simple arrow shape.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_arrow.svg)
---
--- @usage
---shape.arrow(cr, 70, 70)
---shape.arrow(cr,70,70, 30, 10, 60)
---shape.transform(shape.arrow) : rotate_at(35,35,math.pi/2)(cr,70,70)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=head_width] number head_width The width of the head (/\) of the arrow
--- @tparam[opt=width /2] number shaft_width The width of the shaft of the arrow
--- @tparam[opt=height/2] number shaft_length The head_length of the shaft (the rest is the head)
-function module.arrow(cr, width, height, head_width, shaft_width, shaft_length)
- shaft_length = shaft_length or height / 2
- shaft_width = shaft_width or width / 2
- head_width = head_width or width
- local head_length = height - shaft_length
-
- cr:move_to ( width/2 , 0 )
- cr:rel_line_to( head_width/2 , head_length )
- cr:rel_line_to( -(head_width-shaft_width)/2 , 0 )
- cr:rel_line_to( 0 , shaft_length )
- cr:rel_line_to( -shaft_width , 0 )
- cr:rel_line_to( 0 , -shaft_length )
- cr:rel_line_to( -(head_width-shaft_width)/2 , 0 )
-
- cr:close_path()
-end
-
---- A squeezed hexagon filling the rectangle.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_hexagon.svg)
---
--- @usage
---shape.hexagon(cr, 70, 70)
---shape.transform(shape.hexagon) : translate(0,15)(cr,70,20)
---shape.transform(shape.hexagon) : rotate_at(35,35,math.pi/2)(cr,70,40)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
-function module.hexagon(cr, width, height)
- cr:move_to(height/2,0)
- cr:line_to(width-height/2,0)
- cr:line_to(width,height/2)
- cr:line_to(width-height/2,height)
- cr:line_to(height/2,height)
- cr:line_to(0,height/2)
- cr:line_to(height/2,0)
- cr:close_path()
-end
-
---- Double arrow popularized by the vim-powerline module.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_powerline.svg)
---
--- @usage
---shape.powerline(cr, 70, 70)
---shape.transform(shape.powerline) : translate(0, 25) (cr,70,20)
---shape.transform(shape.powerline) : translate(0, 25) (cr,70,20, -20)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=height/2] number arrow_depth The width of the arrow part of the shape
-function module.powerline(cr, width, height, arrow_depth)
- arrow_depth = arrow_depth or height/2
- local offset = 0
-
- -- Avoid going out of the (potential) clip area
- if arrow_depth < 0 then
- width = width + 2*arrow_depth
- offset = -arrow_depth
- end
-
- cr:move_to(offset , 0 )
- cr:line_to(offset + width - arrow_depth , 0 )
- cr:line_to(offset + width , height/2 )
- cr:line_to(offset + width - arrow_depth , height )
- cr:line_to(offset , height )
- cr:line_to(offset + arrow_depth , height/2 )
-
- cr:close_path()
-end
-
---- An isosceles triangle.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_isosceles_triangle.svg)
---
--- @usage
---shape.isosceles_triangle(cr, 70, 70)
---shape.isosceles_triangle(cr,20,70)
---shape.transform(shape.isosceles_triangle) : rotate_at(35, 35, math.pi/2)(cr,70,70)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
-function module.isosceles_triangle(cr, width, height)
- cr:move_to( width/2, 0 )
- cr:line_to( width , height )
- cr:line_to( 0 , height )
- cr:close_path()
-end
-
---- A cross (**+**) symbol.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_cross.svg)
---
--- @usage
---shape.cross(cr, 70, 70)
---shape.cross(cr,20,70)
---shape.transform(shape.cross) : scale(0.5, 1)(cr,70,70)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=width/3] number thickness The cross section thickness
-function module.cross(cr, width, height, thickness)
- thickness = thickness or width/3
- local xpadding = (width - thickness) / 2
- local ypadding = (height - thickness) / 2
- cr:move_to(xpadding, 0)
- cr:line_to(width - xpadding, 0)
- cr:line_to(width - xpadding, ypadding)
- cr:line_to(width , ypadding)
- cr:line_to(width , height-ypadding)
- cr:line_to(width - xpadding, height-ypadding)
- cr:line_to(width - xpadding, height )
- cr:line_to(xpadding , height )
- cr:line_to(xpadding , height-ypadding)
- cr:line_to(0 , height-ypadding)
- cr:line_to(0 , ypadding )
- cr:line_to(xpadding , ypadding )
- cr:close_path()
-end
-
---- A similar shape to the `rounded_rect`, but with sharp corners.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_octogon.svg)
---
--- @usage
---shape.octogon(cr, 70, 70)
---shape.octogon(cr,70,70,70/2.5)
---shape.transform(shape.octogon) : translate(0, 25) (cr,70,20)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam number corner_radius
-function module.octogon(cr, width, height, corner_radius)
- corner_radius = corner_radius or math.min(10, math.min(width, height)/4)
- local offset = math.sqrt( (corner_radius*corner_radius) / 2 )
-
- cr:move_to(offset, 0)
- cr:line_to(width-offset, 0)
- cr:line_to(width, offset)
- cr:line_to(width, height-offset)
- cr:line_to(width-offset, height)
- cr:line_to(offset, height)
- cr:line_to(0, height-offset)
- cr:line_to(0, offset)
- cr:close_path()
-end
-
---- A circle shape.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_circle.svg)
---
--- @usage
---shape.circle(cr, 70, 70)
---shape.circle(cr,20,70)
---shape.transform(shape.circle) : scale(0.5, 1)(cr,70,70)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=math.min(width height) / 2)] number radius The radius
-function module.circle(cr, width, height, radius)
- radius = radius or math.min(width, height) / 2
- cr:move_to(width/2+radius, height/2)
- cr:arc(width / 2, height / 2, radius, 0, 2*math.pi)
- cr:close_path()
-end
-
---- A simple rectangle.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_rectangle.svg)
---
--- @usage
---shape.rectangle(cr, 70, 70)
---shape.rectangle(cr,20,70)
---shape.transform(shape.rectangle) : scale(0.5, 1)(cr,70,70)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
-function module.rectangle(cr, width, height)
- cr:rectangle(0, 0, width, height)
-end
-
---- A diagonal parallelogram with the bottom left corner at x=0 and top right
--- at x=width.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_parallelogram.svg)
---
--- @usage
---shape.parallelogram(cr, 70, 70)
---shape.parallelogram(cr,70,20)
---shape.transform(shape.parallelogram) : scale(0.5, 1)(cr,70,70)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=width/3] number base_width The parallelogram base width
-function module.parallelogram(cr, width, height, base_width)
- base_width = base_width or width/3
- cr:move_to(width-base_width, 0 )
- cr:line_to(width , 0 )
- cr:line_to(base_width , height )
- cr:line_to(0 , height )
- cr:close_path()
-end
-
---- A losange.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_losange.svg)
---
--- @usage
---shape.losange(cr, 70, 70)
---shape.losange(cr,20,70)
---shape.transform(shape.losange) : scale(0.5, 1)(cr,70,70)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
-function module.losange(cr, width, height)
- cr:move_to(width/2 , 0 )
- cr:line_to(width , height/2 )
- cr:line_to(width/2 , height )
- cr:line_to(0 , height/2 )
- cr:close_path()
-end
-
---- A pie.
---
--- The pie center is the center of the area.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_pie.svg)
---
--- @usage
---shape.pie(cr, 70, 70)
---shape.pie(cr,70,70, 1.0471975511966, 4.1887902047864)
---shape.pie(cr,70,70, 0, 2*math.pi, 10)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=0] number start_angle The start angle (in radian)
--- @tparam[opt=math.pi/2] number end_angle The end angle (in radian)
--- @tparam[opt=math.min(width height)/2] number radius The shape height
-function module.pie(cr, width, height, start_angle, end_angle, radius)
- radius = radius or math.floor(math.min(width, height)/2)
- start_angle, end_angle = start_angle or 0, end_angle or math.pi/2
-
- -- If the shape is a circle, then avoid the lines
- if math.abs(start_angle + end_angle - 2*math.pi) <= 0.01 then
- cr:arc(width/2, height/2, radius, 0, 2*math.pi)
- else
- cr:move_to(width/2, height/2)
- cr:line_to(
- width/2 + math.cos(start_angle)*radius,
- height/2 + math.sin(start_angle)*radius
- )
- cr:arc(width/2, height/2, radius, start_angle, end_angle)
- end
-
- cr:close_path()
-end
-
---- A rounded arc.
---
--- The pie center is the center of the area.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_arc.svg)
---
--- @usage
---shape.arc(cr,70,70, 10)
---shape.arc(cr,70,70, 10, nil, nil, true, true)
---shape.arc(cr,70,70, nil, 0, 2*math.pi)
---
--- @param cr A cairo context
--- @tparam number width The shape width
--- @tparam number height The shape height
--- @tparam[opt=math.min(width height)/2] number thickness The arc thickness
--- @tparam[opt=0] number start_angle The start angle (in radian)
--- @tparam[opt=math.pi/2] number end_angle The end angle (in radian)
--- @tparam[opt=false] boolean start_rounded if the arc start rounded
--- @tparam[opt=false] boolean end_rounded if the arc end rounded
-function module.arc(cr, width, height, thickness, start_angle, end_angle, start_rounded, end_rounded)
- start_angle = start_angle or 0
- end_angle = end_angle or math.pi/2
-
- -- This shape is a partial circle
- local radius = math.min(width, height)/2
-
- thickness = thickness or radius/2
-
- local inner_radius = radius - thickness
-
- -- As the edge of the small arc need to touch the [start_p1, start_p2]
- -- line, a small subset of the arc circumference has to be substracted
- -- that's (less or more) equal to the thickness/2 (a little longer given
- -- it is an arc and not a line, but it wont show)
- local arc_percent = math.abs(end_angle-start_angle)/(2*math.pi)
- local arc_length = ((radius-thickness/2)*2*math.pi)*arc_percent
-
- if start_rounded then
- arc_length = arc_length - thickness/2
-
- -- And back to angles
- start_angle = end_angle - (arc_length/(radius - thickness/2))
- end
-
- if end_rounded then
- arc_length = arc_length - thickness/2
-
- -- And back to angles
- end_angle = start_angle + (arc_length/(radius - thickness/2))
- end
-
- -- The path is a curcular arc joining 4 points
-
- -- Outer first corner
- local start_p1 = {
- width /2 + math.cos(start_angle)*radius,
- height/2 + math.sin(start_angle)*radius
- }
-
- if start_rounded then
-
- -- Inner first corner
- local start_p2 = {
- width /2 + math.cos(start_angle)*inner_radius,
- height/2 + math.sin(start_angle)*inner_radius
- }
-
- local median_angle = atan2(
- start_p2[1] - start_p1[1],
- -(start_p2[2] - start_p1[2])
- )
-
- local arc_center = {
- (start_p1[1] + start_p2[1])/2,
- (start_p1[2] + start_p2[2])/2,
- }
-
- cr:arc(arc_center[1], arc_center[2], thickness/2,
- median_angle-math.pi/2, median_angle+math.pi/2
- )
-
- else
- cr:move_to(unpack(start_p1))
- end
-
- cr:arc(width/2, height/2, radius, start_angle, end_angle)
-
- if end_rounded then
-
- -- Outer second corner
- local end_p1 = {
- width /2 + math.cos(end_angle)*radius,
- height/2 + math.sin(end_angle)*radius
- }
-
- -- Inner first corner
- local end_p2 = {
- width /2 + math.cos(end_angle)*inner_radius,
- height/2 + math.sin(end_angle)*inner_radius
- }
- local median_angle = atan2(
- end_p2[1] - end_p1[1],
- -(end_p2[2] - end_p1[2])
- ) - math.pi
-
- local arc_center = {
- (end_p1[1] + end_p2[1])/2,
- (end_p1[2] + end_p2[2])/2,
- }
-
- cr:arc(arc_center[1], arc_center[2], thickness/2,
- median_angle-math.pi/2, median_angle+math.pi/2
- )
-
- end
-
- cr:arc_negative(width/2, height/2, inner_radius, end_angle, start_angle)
-
- cr:close_path()
-end
-
---- A partial rounded bar. How much of the rounded bar is visible depends on
--- the given percentage value.
---
--- Note that this shape is not closed and thus filling it doesn't make much
--- sense.
---
---
---
---![Usage example](../images/AUTOGEN_gears_shape_radial_progress.svg)
---
--- @usage
---shape.radial_progress(cr, 70, 20, .3)
---shape.radial_progress(cr, 70, 20, .6)
---shape.radial_progress(cr, 70, 20, .9)
---
--- @param cr A cairo context
--- @tparam number w The shape width
--- @tparam number h The shape height
--- @tparam number percent The progressbar percent
--- @tparam boolean hide_left Do not draw the left side of the shape
-function module.radial_progress(cr, w, h, percent, hide_left)
- percent = percent or 1
- local total_length = (2*(w-h))+2*((h/2)*math.pi)
- local bar_percent = (w-h)/total_length
- local arc_percent = ((h/2)*math.pi)/total_length
-
- -- Bottom line
- if percent > bar_percent then
- cr:move_to(h/2,h)
- cr:line_to((h/2) + (w-h),h)
- cr:stroke()
- elseif percent < bar_percent then
- cr:move_to(h/2,h)
- cr:line_to(h/2+(total_length*percent),h)
- cr:stroke()
- end
-
- -- Right arc
- if percent >= bar_percent+arc_percent then
- cr:arc(w-h/2 , h/2, h/2,3*(math.pi/2),math.pi/2)
- cr:stroke()
- elseif percent > bar_percent and percent < bar_percent+(arc_percent/2) then
- cr:arc(w-h/2 , h/2, h/2,(math.pi/2)-((math.pi/2)*((percent-bar_percent)/(arc_percent/2))),math.pi/2)
- cr:stroke()
- elseif percent >= bar_percent+arc_percent/2 and percent < bar_percent+arc_percent then
- cr:arc(w-h/2 , h/2, h/2,0,math.pi/2)
- cr:stroke()
- local add = (math.pi/2)*((percent-bar_percent-arc_percent/2)/(arc_percent/2))
- cr:arc(w-h/2 , h/2, h/2,2*math.pi-add,0)
- cr:stroke()
- end
-
- -- Top line
- if percent > 2*bar_percent+arc_percent then
- cr:move_to((h/2) + (w-h),0)
- cr:line_to(h/2,0)
- cr:stroke()
- elseif percent > bar_percent+arc_percent and percent < 2*bar_percent+arc_percent then
- cr:move_to((h/2) + (w-h),0)
- cr:line_to(((h/2) + (w-h))-total_length*(percent-bar_percent-arc_percent),0)
- cr:stroke()
- end
-
- -- Left arc
- if not hide_left then
- if percent > 0.985 then
- cr:arc(h/2, h/2, h/2,math.pi/2,3*(math.pi/2))
- cr:stroke()
- elseif percent > 2*bar_percent+arc_percent then
- local relpercent = (percent - 2*bar_percent - arc_percent)/arc_percent
- cr:arc(h/2, h/2, h/2,3*(math.pi/2)-(math.pi)*relpercent,3*(math.pi/2))
- cr:stroke()
- end
- end
-end
-
---- Adjust the shape using a transformation object
---
--- Apply various transformations to the shape
---
--- @usage gears.shape.transform(gears.shape.rounded_bar)
--- : rotate(math.pi/2)
--- : translate(10, 10)
---
--- @param shape A shape function
--- @return A transformation handle, also act as a shape function
-function module.transform(shape)
-
- -- Apply the transformation matrix and apply the shape, then restore
- local function apply(self, cr, width, height, ...)
- cr:save()
- cr:transform(self.matrix:to_cairo_matrix())
- shape(cr, width, height, ...)
- cr:restore()
- end
- -- Redirect function calls like :rotate() to the underlying matrix
- local function index(_, key)
- return function(self, ...)
- self.matrix = self.matrix[key](self.matrix, ...)
- return self
- end
- end
-
- local result = setmetatable({
- matrix = g_matrix.identity
- }, {
- __call = apply,
- __index = index
- })
-
- return result
-end
-
-return module
-
--- vim: filetype=lua:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:textwidth=80